
INTERFACE PYTHON WITH

MYSQL

Connecting Python application with MySQL

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Introduction

 Every application required data to be stored for future
reference to manipulate data. Today every application
stores data in database for this purpose

 For example, reservation system stores passengers
details for reserving the seats and later on for sending
some messages or for printing tickets etc.

 In school student details are saved for many reasons
like attendance, fee collections, exams, report card etc.

 Python allows us to connect all types of database like
Oracle, SQL Server, MySQL.

 In our syllabus we have to understand how to connect
Python programs with MySQL

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Pre-requisite to connect Python with

MySQL

 Before we connect python program with any database
like MySQL we need to build a bridge to connect
Python and MySQL.

 To build this bridge so that data can travel both ways
we need a connector called “mysql.connector”.

 We can install “mysql.connector” by using following
methods:

 At command prompt (Administrator login)
 Type “pip install mysql.connector” and press enter

 (internet connection in required)

 This connector will work only for MySQL 5.7.3 or later

 Or open
“https://dev.mysql.com/downloads/connector/python/”

and download connector as per OS and Python version VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Connecting to MySQL from Python

 Once the connector is installed you are ready to
connect your python program to MySQL.

 The following steps to follow while connecting your
python program with MySQL

 Open python

 Import the package required (import mysql.connector)

 Open the connection to database

 Create a cursor instance

 Execute the query and store it in resultset

 Extract data from resultset

 Clean up the environment

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Importing mysql.connector

import mysql.connector

Or

import mysql.connector as ms

Here “ms” is an alias, so every time we can use “ms” in

place of “mysql.connector”

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Open a connection to MySQL Database

 To create connection, connect() function is used

 Its syntax is:

 connect(host=<server_name>,user=<user_name>,
passwd=<password>[,database=<database>])

 Here server_name means database servername, generally
it is given as “localhost”

 User_name means user by which we connect with mysql
generally it is given as “root”

 Password is the password of user “root”

 Database is the name of database whose data(table) we
want to use

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example: To establish connection with MySQL

is_connected() function returns

true if connection is established

otherwise false

“mys” is an alias of package “mysql.connector”

“mycon” is connection object which stores connection established with MySQL

“connect()” function is used to connect with mysql by specifying parameters

like host, user, passwd, database

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Table to work (emp)

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Creating Cursor

 It is a useful control structure of database connectivity.

 When we fire a query to database, it is executed and

resultset (set of records) is sent over he connection in

one go.

 We may want to access data one row at a time, but

query processing cannot happens as one row at a time,

so cursor help us in performing this task. Cursor stores

all the data as a temporary container of returned data

and we can fetch data one row at a time from Cursor.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Creating Cursor and Executing Query

 TO CREATE CURSOR

 Cursor_name = connectionObject.cursor()

 For e.g.

 mycursor = mycon.cursor()

 TO EXECUTE QUERY

 We use execute() function to send query to connection

 Cursor_name.execute(query)

 For e.g.

 mycursor.execute(„select * from emp‟)

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example - Cursor

Output shows cursor is created and query is fired and stored, but no data is

coming. To fetch data we have to use functions like fetchall(), fetchone(),

fetchmany() are used
VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Fetching(extracting) data from ResultSet

 To extract data from cursor following functions are used:

 fetchall() : it will return all the record in the form of
tuple.

 fetchone() : it return one record from the result set. i.e.
first time it will return first record, next time it will return
second record and so on. If no more record it will return
None

 fetchmany(n) : it will return n number of records. It no
more record it will return an empty tuple.

 rowcount : it will return number of rows retrieved from
the cursor so far.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example – fetchall()

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example 2 – fetchall()

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example 3 – fetchall()

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example 4: fetchone()

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example 5: fetchmany(n)

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Guess the output

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Parameterized Query

 We can pass values to query to perform dynamic
search like we want to search for any employee
number entered during runtime or to search any
other column values.

 To Create Parameterized query we can use various
methods like:

 Concatenating dynamic variable to query in which
values are entered.

 String template with % formatting

 String template with {} and format function

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Concatenating variable with query

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

String template with %s formatting

 In this method we will use %s in place of values to

substitute and then pass the value for that place.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

String template with %s formatting

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

String template with {} and format()

 In this method in place of %s we will use {} and to

pass values for these placeholder format() is used.

Inside we can optionally give 0,1,2… values for e.g.

{0},{1} but its not mandatory. we can also optionally

pass named parameter inside {} so that while passing

values through format function we need not to

remember the order of value to pass. For e.g.

{roll},{name} etc.

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

String template with {} and format()

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

String template with {} and format()

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Inserting data in MySQL table from Python

 INSERT and UPDATE operation are executed in the

same way we execute SELECT query using execute()

but one thing to remember, after executing insert or

update query we must commit our query using

connection object with commit().

 For e.g. (if our connection object name is mycon)

 mycon.commit()

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example : inserting data
BEFORE PROGRAM EXECUTION

AFTER PROGRAM EXECUTION

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

Example: Updating record

VINOD KUMAR VERMA, PGT(CS), KV OEF KANPUR &

SACHIN BHARDWAJ, PGT(CS), KV NO.1 TEZPUR

for more updates visit: www.python4csip.com

